WINTER OBAN

(ONCORHYNCHUS BAYESIAN ANALYSIS)
A STATISTICAL LIFE-CYCLE MODEL FOR
WINTER-RUN CHINOOK

SALMONID INTEGRATED LIFE-CYCLE MODELS WORKSHOP

NOBLE HENDRIX
R2 RESOURCE CONSULTANTS, INC.

University of Washington NOAA Fisheries CALFED USGS

Science Team

R2 Resource Consultants

Noble Hendrix
Dudley Reiser
Alan Olson
Paul DeVries

Michael Loftus

UW

Ray Hilborn Bob Lessard

NOAA-Fisheries

Tim Beechie
Correigh Greene

UC Davis

John Largier
Joe Cech

Hypotheses regarding factors affecting WR population dynamics

Objectives of OBAN

- Estimate population vital rates by statistically fitting predictions of the population dynamics model to observed indices of abundance
- Evaluate factors that may explain dynamic vital rates through the entire life-cycle, in particular nearshore and oceanic indices of productivity
- Explicitly incorporate uncertainty in the estimation procedure by using a Bayesian framework.

1st Hierarchy: Stage Transitions

Beverton-Holt Function

The parameters of the BH function may change over time

- \square K = capacity
 - Typically attributed to limitations in habitat quantity
 - E.g., diking and levee construction (decadal), floodplain habitat (annual)
- \square p = productivity
 - Survival in most stage transitions, attributed to habitat quality
 - E.g., temperature mortality

Incorporating environmental and anthropogenic factors

- Need to be able to tie changes in the environment or changes in the levels of a managed factor to the survival of a life history stage
- Create a second stage of the hierarchy so that the
 p and K parameters of the Beverton-Holt transition
 can be modeled

2nd Hierarchy: Modeling the BH parameter **p**

Modeling the BH **p** parameter

logit() transformation

2nd Hierarchy: Modeling the BH parameter **K**

Modeling the BH **K** parameter

log() transformation

Full Hierarchy

Winter Run Model details

- □ Period of retrospective analysis: 1967 2008
- Data
 - Annual escapement: 1967 2008
 - 1967 1987 counts conducted via a weir type setting
 - 1988 2001 expansion assuming 15% of the run after May 15th
 - 2002 2008 carcass surveys
 - □ Juvenile production indices: 1995 1999, 2002-2007
- Assumptions:
 - Harvest rates reflect relative levels of exploitation
 - Maturation rates from analysis of '98, '99, '00 CWT data

Winter Run Modeling Tool

OBAN-lite: stand alone software developed by UW and R2

- Delivers point estimates (MLE)
- Estimation is fast
- Stable and available to public
- Easy to convert competing hypotheses into model structural forms (GUI based)
- Easy to compare competing hypotheses with AIC

Winter OBAN

Bayesian estimation

- Covariates incorporated into Winter OBAN
 - Temperature in spawning reaches (alevin)
 - Minimum Flow at Bend Bridge (fry)
 - Exports, Yolo access (delta)
 - Curl upwelling index (gulf)
 - Harvest (ocean 2 and 3)

The Good Reverend
Thomas Bayes

$$p(\beta \mid y) = \frac{p(\beta)p(y \mid \beta)}{p(y)}$$

Non-informative Priors

- Beta coefficients in logistic regression for productivities (King et al. 2010)
 - $\square \beta \sim N(0, 0.5)$, such that $\sigma^2 = 2$
- Beta coefficients in log linear regression for capacities
 - $\beta \sim N(0, 0.001)$, such that $\sigma^2 = 1000$
- Measurement error standard deviations
 - $\sigma \sim Unif(0.30)$

Informative Priors

- Conditional Maturation rates
 - Age 2 ~ Beta(1,10), [95%CI: 0.002, 0.31]
 - Age 3 ~ Beta(10,1), [95%CI: 0.69, 0.99]
 - Age 4 = 100%
 - Consistent with Analysis of CWT 1998 2000 brood years (Grover, A. 2004)
 - 0.01 0.17 Age 2 Maturation
 - 0.96-0.97 Age 3 Conditional Maturation Rate
 - 1.0 Age 4 Conditional Maturation Rate
- Structuring of escapement measurement error

$$\sigma_{\text{weir}} \leq \sigma_{\text{carcass}} \leq \sigma_{\text{expansion}}$$

Bayesian estimation

- Model constructed in WinBUGS
- Implemented MCMC primarily via Distribution free adaptive rejection steps (log concave densities)
- Few opportunities for Gibbs sampling due to few conjugate priors being employed
- □ Ran 3 chains
- Evaluated lack of convergence with Brooks-Gelman-Rubin statistic (Brooks and Gelman 1998)
- 25,000 burn-in; 25,000 samples, thinned every 75
 per chain

WR escapement

Escapement with measurement error

OBAN fit to WR escapement

mean predictions

OBAN fit to WR escapement

mean predictions with 95% credible intervals

OBAN fit to juvenile counts

mean and 95% symmetric credible intervals

Measurement error estimates from different escapement data sources

Posterior Distributions of Environmental Drivers

Population Viability Analysis

- Temperature in spawning reaches is random draw from Normal distribution with average (13.2 C) and standard deviation (0.9 C) from 1997 to 2008
- □ Harvest set at 0.27 (rate since 1997)

Escapement Forecast - 50 years

Next Steps - Winter Run

- Evaluate value of age structured return data
- Revisit Botsford and
 Brittnacher 1998
 delisting criteria (Cons.
 Bio. 12:65)
 - 10,000 spawning females
 - 13 years of escapement estimates
 - Assuming 25% sampling error
 - leads to ≤ 10% chance of quasi-extinction in 50 years

Next Steps - OBAN

- Spring-run and fall-run models
 - Spring-run model for Butte and Deer Creek completed in MLE framework
 - Fall-run model is focus of newly funded CALFED grant with UW
 - Incorporating hatchery impacts

- Delta specific models
 - Evaluation of potential for life-history diversity of fall, spring, and winter-run through habitat restoration of the Delta
 - Models being developed in SLAM with NMFS NWFSC and SWFSC

THANK YOU

nhendrix@r2usa.com